Goto Chapter: Top 1 2 3 4 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

References

[AK00] Amberg, B. and Kazarin, L. S., On the adjoint group of a finite nilpotent p-algebra, J. Math. Sci. (New York), 102 (3) (2000), 3979--3997.

[AS01] Amberg, B. and Sysak, Y. P., Radical rings and their adjoint groups, in Topics in infinite groups, Dept. Math., Seconda Univ. Napoli, Caserta, Quad. Mat., 8 (2001), 21--43.

[AS02] Amberg, B. and Sysak, Y. P., Radical rings with soluble adjoint groups, J. Algebra, 247 (2) (2002), 692--702.

[AS04] Amberg, B. and Sysak, Y. P., Associative rings with metabelian adjoint group, J. Algebra, 277 (2) (2004), 456--473.

[AI97] Artemovych, O. D. and Ishchuk, Y. B., On semiperfect rings determined by adjoint groups, Mat. Stud., 8 (2) (1997), 162--170, 237.

[Gor95] Gorlov, V. O., Finite nilpotent algebras with a metacyclic quasiregular group, Ukra\"\i n. Mat. Zh., 47 (10) (1995), 1426--1431.

[KS04] Kazarin, L. S. and Soules, P., Finite nilpotent p-algebras whose adjoint group has three generators, JP J. Algebra Number Theory Appl., 4 (1) (2004), 113--127.

[PS97] Popovich, S. V. and Sysak, Y. P., Radical algebras whose subgroups of adjoint groups are subalgebras, Ukra\"\i n. Mat. Zh., 49 (12) (1997), 1646--1652.

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 Bib Ind

generated by GAPDoc2HTML